Chapter 5 Genome Wide Associated Studies (GWAS)"
5.1 SNP analysis using SNPasoc R package
Example demonstrate an association test for an illness for one single SNP.
install.packages("SNPassoc")
library("SNPassoc")
data(SNPs)
head(SNPs)
head(SNPs.info.pos)
# select 6-40 SNP and create SNP object
mySNP <- setupSNP(SNPs, 6:40, sep="")
# casco - 1 for case, 0 for control)
mySNP
# association test
res <- association(casco~sex+snp10001+blood.pre, data = mySNP,
model.interaction = c("dominant","codominant"))
res0 - control sample size
% - percent for each variant
1 - case sample size
% - percent for each varian
OR - odd ratio
lower/upper - 95% confidence interval for odd ratio
p-value of likelihood ratio test
AIC - Akaike Information Criterion
# association scan for SNPs - separately for all models
res <- WGassociation(protein, data = mySNP, model = 'all') # same formula as protein~1,
# p-values for dominant model
dominant(res)
# p-values for recessive model
recessive(res)
# complete statistics
WGstats(res)
summary(res)
# Plot p-values for all models
plot(res)
# whole genome association - one log model
resHapMap <- WGassociation(protein, data= mySNP, model='log')
plot(resHapMap)
Another examplw for all genome association
# two population groups (CEU and YRI), 60 samples for each group
data(HapMap)
str(HapMap)
str(HapMap.SNPs.pos)
# SNP class object
myHapMap <- setupSNP(HapMap, colSNPs=3:9307, sort=TRUE, info=HapMap.SNPs.pos, sep="")
# association for dominant model
myHapMapres <- WGassociation(group, data= myHapMap, model="dominant")
head(myHapMapres)
print(myHapMapres)
# plot association for all chromosomes
plot(myHapMapres, whole=TRUE)5.2 GWAS using PLINK
The PLINK format of the GWAS data consists of two separate files, one containing the SNP information (.ped)and the other containing the mapping information (.map). For dependence analysis, it can be combined with the phenotype data separately.