Chapter 5 Genome Wide Associated Studies (GWAS)"
5.1 SNP analysis using SNPasoc R package
Example demonstrate an association test for an illness for one single SNP.
install.packages("SNPassoc")
library("SNPassoc")
data(SNPs)
head(SNPs)
head(SNPs.info.pos)
# select 6-40 SNP and create SNP object
<- setupSNP(SNPs, 6:40, sep="")
mySNP
# casco - 1 for case, 0 for control)
mySNP
# association test
<- association(casco~sex+snp10001+blood.pre, data = mySNP,
res model.interaction = c("dominant","codominant"))
res
0 - control sample size
% - percent for each variant
1 - case sample size
% - percent for each varian
OR - odd ratio
lower/upper - 95% confidence interval for odd ratio
p-value of likelihood ratio test
AIC - Akaike Information Criterion
# association scan for SNPs - separately for all models
<- WGassociation(protein, data = mySNP, model = 'all') # same formula as protein~1,
res # p-values for dominant model
dominant(res)
# p-values for recessive model
recessive(res)
# complete statistics
WGstats(res)
summary(res)
# Plot p-values for all models
plot(res)
# whole genome association - one log model
<- WGassociation(protein, data= mySNP, model='log')
resHapMap plot(resHapMap)
for all genome association
Another examplw # two population groups (CEU and YRI), 60 samples for each group
data(HapMap)
str(HapMap)
str(HapMap.SNPs.pos)
# SNP class object
<- setupSNP(HapMap, colSNPs=3:9307, sort=TRUE, info=HapMap.SNPs.pos, sep="")
myHapMap
# association for dominant model
<- WGassociation(group, data= myHapMap, model="dominant")
myHapMapres
head(myHapMapres)
print(myHapMapres)
# plot association for all chromosomes
plot(myHapMapres, whole=TRUE)
5.2 GWAS using PLINK
The PLINK format of the GWAS data consists of two separate files, one containing the SNP information (.ped)and the other containing the mapping information (.map). For dependence analysis, it can be combined with the phenotype data separately.